UNCLASSIFIED/UNLIMITED Click here to view PowerPoint presentation; Press Esc to exit ## Flow Forming of Aircraft Engine Components #### Jean Savoie Pratt & Whitney Canada 1000 Marie Victorin, Longueuil Québec J4G 1A1 CANADA jean.Savoie@pwc.ca ## **ABSTRACT** Aircraft engine components are often an assembly of several parts that are manufactured using various processes: deep drawing, machining, among others. Sheet metal forming requires expensive tooling and is performed in numerous steps, increasing lead-time. Furthermore, with the ever increasing costs of raw material, machining parts out of forged or cast rings is becoming less cost effective as up to 90% of the material can be wasted. For these reasons, the use of near net shape manufacturing methods is becoming inevitable. An alternative forming process is here investigated: flow-forming, process well adapted to axisymmetric parts. The amount of forming steps, welding and machining could be significantly reduced, hence reducing lead-time and manufacturing costs. Metallurgical and mechanical properties of a flowformed case will be presented and compared with material characteristics of cases manufactured by machining of forged rings. It will be shown that both forming processes yield to equivalent results. #### 1.0 INTRODUCTION Aircraft engine components are often an assembly of several parts (e.g. combustion chamber) that are manufactured using various processes (e.g. stamping, machining). A significant number of these parts are formed using sheet metal forming (e.g. deep drawing). Deep drawing requires expensive tooling and is generally performed in numerous steps, often including intermediate annealing. All these steps are time consuming and therefore increase lead-time. Furthermore, if the assembly involves welding of different parts, lead-time is further increased and more distortion is likely in the final assembly. Additionally, with the ever-increasing costs of raw material, especially of super-alloys and titanium alloys, machining of axisymmetric parts out of forged rings is becoming less and less cost effective as up to 90% of the material can be wasted. Reducing the use of raw material is therefore inevitable. For these reasons, near net shape manufacturing methods are appealing. An alternative forming process is here investigated: flowforming, process well adapted to axisymmetric parts. The number of forming steps, welding and machining can be significantly reduced, hence reducing lead-time and manufacturing costs. It should be noted that alloys suitable for sheet metal forming are also suitable for flowforming. Savoie, J. (2006) Flow Forming of Aircraft Engine Components. In *Cost Effective Manufacture via Net-Shape Processing* (pp. 22-1 – 22-14). Meeting Proceedings RTO-MP-AVT-139, Paper 22. Neuilly-sur-Seine, France: RTO. Available from: http://www.rto.nato.int/abstracts.asp. RTO-MP-AVT-139 22 - 1 | maintaining the data needed, and c
including suggestions for reducing | lection of information is estimated to
ompleting and reviewing the collect
this burden, to Washington Headqu
uld be aware that notwithstanding ar
DMB control number. | ion of information. Send comments
arters Services, Directorate for Info | regarding this burden estimate or regarding this burden estimate or regarding this properties. | or any other aspect of the property pro | his collection of information,
Highway, Suite 1204, Arlington | | | |--|---|--|--|--|--|--|--| | 1. REPORT DATE MAY 2006 | | 2. REPORT TYPE N/A | | 3. DATES COVE | ERED | | | | 4. TITLE AND SUBTITLE | | | | 5a. CONTRACT | NUMBER | | | | Flow Forming of A | 5b. GRANT NUMBER | | | | | | | | | | | | | 5c. PROGRAM ELEMENT NUMBER | | | | 6. AUTHOR(S) | | | | 5d. PROJECT NUMBER | | | | | | | | | | 5e. TASK NUMBER | | | | | | | | 5f. WORK UNIT NUMBER | | | | | | ZATION NAME(S) AND AE
Canada 1000 Marie V | ` ' | Québec J4G | 8. PERFORMING
REPORT NUMB | G ORGANIZATION
ER | | | | 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) | | | 10. SPONSOR/MONITOR'S ACRONYM(S) | | | | | | | | | | 11. SPONSOR/MONITOR'S REPORT
NUMBER(S) | | | | | 12. DISTRIBUTION/AVAIL Approved for publ | LABILITY STATEMENT
ic release, distributi | on unlimited | | | | | | | | OTES 48. Cost Effective Monition immediate), 7 | | _ | | e de fabrication par | | | | 14. ABSTRACT | | | | | | | | | 15. SUBJECT TERMS | | | | | | | | | 16. SECURITY CLASSIFICATION OF: 17 | | | 17. LIMITATION OF | 18. NUMBER | 19a. NAME OF | | | | a. REPORT
unclassified | b. ABSTRACT
unclassified | c. THIS PAGE
unclassified | - ABSTRACT
UU | OF PAGES 65 | RESPONSIBLE PERSON | | | **Report Documentation Page** Form Approved OMB No. 0704-0188 #### UNCLASSIFIED/UNLIMITED #### Flow Forming of Aircraft Engine Components Gas-generator cases belong to components well suited for this forming process. They hold the pressurized air from the compressor and force it to flow inside the combustion chamber (Figure 1). It is thus a pressure vessel subjected to cyclic stresses and relatively high temperatures. The metallurgical integrity and mechanical properties of the flowformed parts are thus crucial. In this paper we will compare the metallurgical and mechanical properties of parts produced by both processes (flowforming and the more traditional machining), keeping in mind that the flowformed components must be at least as good as the machined ones to avoid significant design changes and hence qualification costs. Figure 1: Cross-section of part of a turbo-fan ## 2.0 FLOWFORMING PROCESS Flowforming is a process used to form rotationally symmetrical hollow parts. It involves applying a compressive force to the outside diameter of a preform mounted on a rotating mandrel. The preform is forced to flow along the mandrel by a set of two to four rollers that move along the length of the rotating preform, forcing it to match the shape of the mandrel (Figure 2). Flowforming can produce parts of varying wall thicknesses as well as varying internal diameters. In some cases the design of the components must be adapted to the new forming processes to facilitate the manufacturing (for example, smooth transitions are more adapted to flow forming). All of these parts require tight tolerances that can be achieved with the modern flowforming machines. However, containment parts and especially structural parts produced in a new way must be re-certified for both metallurgical and mechanical characteristics. 22 - 2 RTO-MP-AVT-139 Figure 2: Principles of Flowforming As an example, we consider here the case-gas generator of one of our engine (Figure 3). The thickness decreases from 1.168mm to 1.041mm, from the smallest (335.28mm) to the largest (388.42mm) outside diameters, respectively. The material is a ferritic/martensitic stainless steel SS410 (12.5%Cr, <0.75%Ni, <0.15%C). After machining/forming and final assembly, the cases are hardened and tempered to obtain the wished microstructure and hardness. The traditional way would be to machine the case out of two or three forged rings to meet the thickness tolerances. The use of flowforming reduces the costs significantly by at least 30% (use of raw material and machining time) while respecting the drawing specifications. Figure 3: Case gas generator cross-section showing the flowformed section. The two extremities (flange and conical cylinder) are machined (due to complex internal features) and welded to the flowformed case - Dimensions in mm Figure 4 shows the preform shape together with the mandrel geometry. The preform is obtained from deep drawing using a cold rolled and annealed sheet 2.795mm thick. The case is then flowformed in one pass using a two-roller flowforming machine, leading to a maximum reduction of about 63%. A full anneal then follows to recrystallise the microstructure (30 minutes at 745°C, then gas cooled). To compare microstructure and properties of the flowformed part with those of traditional machined components, specimens were extracted from a SS410 forged ring machined into a cylinder. ## 3.0 RESULTS AND DISCUSSION In this section we will discuss four main topics: microstructure, tensile properties, crystallographic texture and low-cycle fatigue (LCF) life. Samples were extracted at various locations on the flowformed case (Figure 5). The microstructure of the flowformed and annealed material (Figure 6) exhibits very fine equiaxed ferritic grains with a grain size of about ASTM-11 (9 μ m) and hardness of 84 Rockwell B. No defects were detected. The presence of very fine grains is with no doubt the consequence of the work hardening experienced by the material during flowforming. The microstructures and hardnesses are very homogeneous along both the axial and circumferential directions. Figure 4: Preform shape and mandrel geometry (Courtesy of PMF-Industries) - Dimensions in inches Mechanical properties were measured from small samples cut along the axial (L) and circumferential (T) directions at various positions (Figure 7 and Table 1). Tensile tests were performed at constant displacement (0.0212 mm/sec) at Ecole de Technologie Supérieure (Montréal, Canada) with a Messphysik video extensometer using a point measurement module. The positions (X and Y) of 3 points were recorded together with the force at 60Hz. The deformation was calculated from the average deformation of the 3 pairs of points. The tensile data exceed by far the requirements of the aerospace specification AMS5504 for annealed SS410 sheet: a minimum of 207Mpa and 450-650Mpa for the yield and tensile strengths respectively, as well as a minimum of 15% elongation. These results are consistent with the very fine grain structure: the AMS standard specifies a grain size of ASTM-5 (72 μ m) or smaller. Additionally, it is clear from the results that the tensile properties are homogeneous throughout the part and that the effect of sample orientation can be neglected. Such conclusion, however, is postulated in the limit of resolution of the method: the sample size and curvature, as well as the small number of reference marks limit the accuracy of the results. Tensile results hence suggest that the anisotropy of the material is weak. This conclusion is rather surprising as the flowforming process introduces relatively large deformations in the case. Unfortunately, the asdeformed material is currently unavailable. However, we can assume that the recrystallisation mechanism is such that it favours the occurrence and growth of a large spectrum of nuclei that randomise the texture. RTO-MP-AVT-139 22 - 5 Figure 5: Sample extraction (1=initial rolling direction). Rectangular samples are cut for metallographic and crystallographic texture investigations. Gauge geometry of small tensile samples: 2.5mmx10mmxthickness. Samples are identified using numbers and letters, along circumferential and axial directions, respectively. Figure 6: Microstructure of flowformed and annealed case (Sample B1) Figure 7: Tensile results from samples taken along the axial direction 4 of flowformed case (L=axial direction, T=circumferential direction) | Sample | A1L | A1T | A3L | A3T | A2L | A2T | A4L | A4T | |---------------|------|------|------|------|------|------|------|------| | Yield (Mpa) | 350 | 365 | 330 | 330 | 360 | 360 | 350 | 350 | | UTS (Mpa) | 727 | 696 | 717 | 706 | 714 | 702 | 703 | 721 | | strain at UTS | 0.21 | 0.14 | 0.18 | 0.16 | 0.19 | 0.18 | 0.16 | 0.19 | | Sample | B1L | B1T | B3L | ВЗТ | B2L | B2T | B4L | B4T | | Yield (Mpa) | 350 | 360 | 370 | 330 | 350 | - | 340 | - | | UTS (Mpa) | 662 | 684 | 681 | 718 | 693 | 702 | 719 | 752 | | strain at UTS | 0.14 | 0.13 | 0.14 | 0.21 | 0.13 | 0.15 | 0.21 | 0.22 | | Sample | C1L | C1T | C3L | C3T | C2L | C2T | C4L | C4T | | Yield (Mpa) | 345 | 340 | 360 | 1 | - | 355 | 365 | 340 | | UTS (Mpa) | 716 | 703 | 688 | - | 697 | 706 | 697 | 682 | | strain at UTS | 0.23 | 0.21 | 0.17 | - | 0.19 | 0.18 | 0.17 | 0.16 | Table 1: Tensile test data of all samples of the flowformed case (L=axial direction, T=circumferential direction). Results of samples 1/3 and 2/4 are presented together as they correspond to symmetrical positions on the case: 0°/180° and 90°/270°, respectively To confirm this, crystallographic textures were determined from pole figures measured at McGill University (Montréal, Canada). The orientation distribution functions (ODF's) were calculated from three incomplete pole figures, (110), (200), (211), using the series expansion method [1] and ghost corrected using the exponential method [2]. The ODF sections at φ 2=45° show that the textures are effectively weak and do not vary significantly along the circumferential direction but only slightly along the axial direction (Figure 8). It consists of a dominant gamma fibre (all orientations whose (111) plane normals are parallel to the radial direction), with the Goss- (011)<100> and cube- (001)<100> texture components. These ODF's are similar to the ones obtained after rolling (at intermediate reductions) and recrystallisation of alpha steels [3]. Before RTO-MP-AVT-139 22 - 7 # ORGANIZATION #### Flow Forming of Aircraft Engine Components drawing more conclusions, the as-deformed textures and orientation imaging mapping (OIM) investigations will have to be performed. Figure 8: φ 2=45° ODF-sections of a) A1 sample and b) C1 sample, showing the gamma-fibre, cube and Goss texture components (flowformed case). Intensity levels: 1-1.2-1.5-1.7-2.0-2.5 The resulting properties can only be close to isotropic. It should be noted that the presence of a uniform gamma-fibre (independently of its intensity) does not induce planar anisotropy [4]. The fact that flowforming and rolling textures share similar features, at least after recrystallisation, adds more conviction to the affirmation that both flowforming and rolling are plane-strain processes (the rolling and transverse directions being replaced by the axial and circumferential directions, respectively) [5]. In the engine program under consideration, we decided not to take into account LCF tests on specimens extracted from the flowformed case, due to concerns related to the curvature in the specimens. Attempt to "flatten" these specimens would have altered the process and made the test data interpretation problematic. We therefore decided to complete the LCF test with a complete flowformed case subjected to the maximum possible pressure. The test assembly completed 120,000 cycles with no crack initiated, substantiating 30,000-mission life with a scatter factor of 4. #### 3.1 Comparison with machined case The microstructure of the forged SS410 ring consists of a mixture of ferritic and tempered martensitic grains (Figure 9). The microstructure exhibits more or less equiaxed grains with a grain size of ASTM-8 (25µm) and hardness of 84.5 Rockwell B. The fact that the forged microstructure (ferrite and martensite) is not harder than the flowformed one (only ferrite) could be explained by its coarser grain size. The yield stresses are comparable for the machined and flowformed parts. The ultimate stresses, however, are higher by about 40Mpa in the machined part, probably due to the presence of martensite in the forged material (Figure 10 and Table 2). Finally, as expected, the crystallographic texture is nearly random with a maximum orientation density or probability f(g)=1.6 (Figure 11). The material is nearly perfectly isotropic. 22 - 8 RTO-MP-AVT-139 Figure 9: Microstructure of forged ring Figure 10: Tensile test results of samples taken in the flowformed case and forged ring (L=axial direction, T=circumferential direction) | Sample | Flowformed L | Forged L | | |-----------------------|---------------------|-----------------|--| | Yield (Mpa) | 340 | 365 | | | UTS (Mpa) | 719 | 758 | | | strain at UTS | 0.21 | 0.20 | | | | | | | | Sample | Flowformed T | Forged T | | | Sample
Yield (Mpa) | Flowformed T
350 | Forged T
340 | | | | | | | Table 2: Tensile test data of flowformed and machined samples (L=axial direction, T=circumferential direction) Figure 11: φ2=45° ODF-sections samples taken at two locations on a forged ring. Intensity levels: 1-1.2-1.5 #### 3.2 Hardened Condition After forming/machining and assembly, the case-gas generator is hardened-tempered to give the material its final properties. The case is first held in the austenite range at 980°C for an hour and forced gas cooled, followed by a treatment to temper the martensite (580°C for two hours). The material hardness target ranges from 26 to 32 Rockwell C. The microstructures of flowformed and machined samples are close in terms of phase distribution and "grain size" with a somewhat finer structure for the forged part (Figure 12). The hardnesses reach 31 and 30 Rockwell C for the flowformed and machined samples, respectively. The yield stresses are comparable for the machined and flowformed parts. The ultimate stresses, however, are slightly higher by about 15-20Mpa in the machined part, reflecting the finer microstructure in the forged material (Figure 13 and Table 3). Crystallographic textures were not measured. However, as the textures were already weak (before harden and temper treatment), they should be even closer to random after experiencing two phase-transformations (ferrite to austenite to martensite). 22 - 10 RTO-MP-AVT-139 Figure 12: Microstructure in the hardened condition of a) flowformed part and b) machined part Figure 13: Tensile test results of samples taken in the flowformed case and forged ring in the hardened condition (L=axial direction, T=circumferential direction) | Sample | Flow C3 L | Flow C2 L | Forged 1 L | Forged 2 L | |---------------|-----------|-----------|------------|------------| | Yield (Mpa) | 720 | 730 | 720 | 730 | | UTS (Mpa) | 1030 | 1016 | 1058 | 1031 | | strain at UTS | 0.07 | 0.09 | 0.09 | 0.07 | | Sample | Flow C3 T | Flow C1 T | Forged 1 T | Forged 2 T | | Yield (Mpa) | 730 | 720 | 730 | 720 | | UTS (Mpa) | 1018 | 1023 | 1041 | 1042 | | strain at UTS | 0.08 | 0.08 | 0.07 | 0.09 | Table 3: Tensile test data of flowformed and machined samples in the hardened condition (L=axial direction, T=circumferential direction) #### 4. CONCLUSIONS Flowforming is an alternative forming method to produce axisymmetric parts at lower costs than the traditional machining of forged rings. Because of the work hardening that the flowformed part experiences, the microstructure is finer and mechanical properties are better (higher yield and ductility). However, after martensitic phase transformation, the resulting microstructure and properties are equivalent. Flowforming of pressure vessels in SS410 is therefore a safe forming process as long as the forming parameters and the initial sheet properties are controlled (locked process) once the process has been qualified to ensure reproducibility. #### **ACKNOWLEDGEMENTS** The author wish to thank Mark Beauregard and Mélissa Després of Pratt & Whitney Canada for the numerous discussions and results used in this paper as well as to Kenneth Healy from PMF-Industries who provided us flowformed cases for this investigation. #### **REFERENCES** - [1] H.J. Bunge; Texture Analysis in Materials Science (ed. Butterworths, London, 1982) - [2] P. Van Houtte; Text. Microstruct. 13 (1991), p.199 - [3] L.S. Toth, J.J. Jonas, D. Daniel and R.K. Ray; *Metall. Trans.* **21A** (1990), p.2985 - [4] D. Daniel, J. Savoie and J.J. Jonas; *Acta Metall. Mater.* **41** (1993), p.1907 - [5] C.C. Wong, T.A. Dean and J. Lin; Int. J. Machine Tools & Manufacture 43 (2003), pp.1419 ## **MEETING DISCUSSION – PAPER NO: 22** Author: J. Savoie Discusser: C. Bampton Question: 1. What are ID and OD surface finishes? 2. Can you join flanges by inertia welding? Response: 1. ID surface finish is comparable to the one of deep drawn parts. OD finish is rougher - roller lines. 2. Could be a possibility for thick parts. However, case-gas-generators walls can be thin (1-1.5 mm). In that case, inertia welding might be difficult. RTO-MP-AVT-139 22 - 13 # Flow Forming of Aircraft Engine Components **Jean Savoie Pratt & Whitney Canada** NATO AVT-139 Specialists' Meeting (RSM) – May 15-18 2006 ©2006 Pratt & Whitney Canada ## **INTRODUCTION** - Aircraft engine components are assemblies of several parts that are manufactured using various processes: deep drawing, machining ... - Deep drawing can require expensive tooling and is performed in numerous steps, increasing lead-time. - With ever increasing costs of raw material, machining parts out of forged or cast rings is becoming less cost effective as up to 90% of the material can be wasted. ## INTRODUCTION - For these reasons, the use of near net shape manufacturing methods is becoming inevitable. - An alternative forming process is here investigated: flow-forming, process well adapted to axisymmetric parts (reduction of forming steps, welding and machining). - Metallurgical and mechanical properties of a flowformed case will be presented and compared with material characteristics of parts manufactured by machining of forged rings. ## **OUTLINE** - Flowforming process - Case study: case gas generator - Metallurgical and mechanical properties of the flowformed and annealed case (before hardening) - Comparison with machined case (before hardening) - Hardened condition - Conclusions and further work - Form rotationally symmetrical hollow parts. A compressive force is applied to the outside diameter of a preform mounted on a rotating mandrel. - The preform is forced to flow along the mandrel by a set of two to four rollers that move along the length of the rotating preform, forcing it to match the shape of the mandrel. **Basic Principle of Flow-forming (forward)** # Flow-forming Machine (Leifeld ST65-132) Min. dia. 1.2 in.; max. dia 25.6 in.; max length 118 in. ## **Key process parameters:** - Preform shape (and process) - Mandrel shape - Mandrel angular velocity - Feed rate (axial velocity) - Roller shape and layout - Number of rollers - Number of passes - Final annealing - Flowforming can produce parts of varying wall thicknesses as well as varying internal diameters. - Most engines parts require tight tolerances that can be achieved with the modern flowforming machines. - However, containment parts and especially structural parts produced in a new way must be recertified for both metallurgical and mechanical characteristics. ## **CASE STUDY: GAS GENERATOR CASE** - Gas-generator cases belong to components well suited for flowforming. They hold the pressurized air from the compressor and force it to flow inside the combustion chamber. - They are thus pressure vessels subjected to cyclic stresses and relatively high temperatures. Hence, metallurgical and mechanical properties are critical. # **Cross Section of a Turbofan** ## **CASE STUDY: GAS GENERATOR CASE** - Material is a ferritic/martensitic stainless steel SS410 (12.5%Cr, <0.75%Ni, <0.15%C). - After machining/forming and final assembly, the cases are hardened and tempered to obtain the wished microstructure and hardness. Case Gas Generator of one of our engine ## **CASE STUDY** - The traditional way: machine the case out of forged rings - At least 30% cost reduction - Deep drawn preform from rolled and annealed sheet 2.795mm thick - Flowformed in one pass using a two-roller machine (63% reduction) - Microstructure recrystallisation (30min@745°C, then gas cooled) **Preform Shape and Mandrel Geometry** ## **METALLURGICAL AND MECHANICAL PROPERTIES** - We will discuss four main topics: - microstructure - > tensile properties - crystallographic texture. - low-cycle fatigue (LCF) life (for hardened case) - Samples were extracted at various locations on the flowformed case. # **METALLURGICAL AND MECHANICAL PROPERTIES** ## **Sample Extraction** Rectangular samples are cut for metallographic and crystallographic texture investigations. Gauge geometry of small tensile samples: 2.5mmx10mmxthickness. 1=initial rolling direction. # **MICROSTRUCTURE** - Equiaxed grains size 9μm - Hardness: 84 HR-B - Homogeneous microstructure Microstructure of Flowformed and Annealed Case (Sample B1) ## **TENSILE TESTS** - Measured at at constant displacement (0.0212 mm/sec) with a Messphysik video extensometer (point measurement module) along the axial (L) and circumferential (T) directions. - Positions (X and Y) of 3 points were recorded together with the force at 60Hz. The deformation calculated from the average deformation of the 3 pairs of points. Tensile samples before and after testing ## **TENSILE TESTS** Tensile results from samples taken along the axial direction 4 of flowformed case (L=axial direction, T=circumferential direction) ## **TENSILE TESTS** - Tensile data exceed by far the minimum requirements of the aerospace specification AMS5504 for annealed SS410 sheet: - yield: 207Mpa (~350Mpa) - UTS: 450-650Mpa (~700Mpa) - elongation: 15% (up to 23%) - grain size: 72μm or smaller (9μm) - Tensile properties are homogeneous throughout the part and the effect of sample orientation can be neglected. ## **TEXTURE REPRESENTATION** - Crystallographic textures were determined from three incomplete pole figures, (110), (200), (211). - The Orientation Distribution Functions (ODF's) were calculated using the series expansion method and ghost corrected using the exponential method. # **Texture Representation in Sheet** random texture Ka: sample coordinate system Kb: crystal coordinate system cube texture (0°,0°,0°) (no rotation necessary) ## **Texture Representation** Schematic ODF showing the positions of the main texture components on the ϕ_2 =45° section Gamma Fibre: (111)<uvv> Cube: (001)<100> Goss: (001)<110> (hkl): plane || radial direction <uvw>: direction || axial direction # **TEXTURE REPRESENTATION** ϕ_2 =45° ODF-sections of a) A1 sample and b) C1 sample (flowformed case). Intensity levels: 1 1.2 1.5 1.7 2.0 2.5 ## **TEXTURE REPRESENTATION** - As the texture is weak, we can assume that the recrystallisation mechanism is such that it favours the occurrence and growth of a large spectrum of nuclei that randomise the texture. - The resulting properties can only be close to isotropic. It should be noted that the presence of a uniform gamma-fibre (independently of its intensity) does not induce planar anisotropy. - Before drawing more conclusions, the as-deformed textures and orientation imaging mapping (OIM) investigations will have to be performed. • To compare microstructure and properties of the flowformed part with those of traditional machined components, specimens were extracted from a SS410 forged ring machined into a cylinder. - Mix of ferrite and tempered martensite - Equiaxed grains size 25μm - Hardness: 84.5 HR-B - Homogeneous microstr. Microstructure of Forged Ring Tensile test results of samples taken in the flowformed case and forged ring (L=axial direction, T=circumferential direction) φ₂=45° ODF-sections of a) A1 sample and b) C1 sample (forged ring). Intensity levels: 1 1.2 1.5 - The yield stresses are comparable for the machined and flowformed parts. - The ultimate stresses, however, are higher by about 40Mpa in the machined part: - martensite in the forged material - structure not fully recovered? - Finally, as expected, the crystallographic texture is nearly random with a maximum orientation density or probability f(g)=1.6 (nearly perfectly isotropic) - After forming/machining and assembly, the casegas generator is hardened-tempered to give the material its final properties. - The case is first held in the austenite range at 980°C for an hour and forced gas cooled, followed by a treatment to temper the martensite (580°C for two hours). - The material hardness target ranges from 26 to 32 Rockwell C. Microstructure in the hardened condition a) flowformed part (31HR-C) and b) machined part (30HR-C) Tensile test results of samples taken in flowformed case and forged ring in hardened condition (L=axial direction, T=circumferential direction) - The yield stresses are comparable for the machined and flowformed parts. - The ultimate stresses, however, are slightly higher by about 15-20Mpa in the machined part, reflecting the finer microstructure in the forged material: - forged structure not fully recovered?! - Crystallographic textures were not measured. - However, they should be even closer to random after experiencing two phase-transformations (ferrite to austenite to martensite). | Transformation Laws | Variants | Orientation Relationships | |--------------------------------|----------|--| | Bain (B) | 3 | $\{100\}\gamma//\{100\}\alpha$ and $<100>\gamma//<110>\alpha$ | | Kurdjumov-Sachs (K-S) | 24 | $\{111\}\gamma //\{110\}\alpha \text{ and } <110>\gamma //<111>\alpha$ | | Nishiyama-Wassermann (N-W) | 12 | $\{111\}\gamma//\{110\}\alpha$ and $<112>\gamma//<110>\alpha$ | Transformation laws in steels (assuming no variant selection) austenite ↔ ferrite/bainite/martensite # Low Cycle Fatigue (LCF) - In the engine program under consideration, we decided not to take into account LCF tests on specimens extracted from the flowformed case. - LCF tests were performed using a complete flowformed case subjected to the maximum possible pressure. - The test assembly completed 120,000 cycles with no crack initiated, substantiating 30,000 mission life with a scatter factor of 4. ## **CONCLUSIONS** - Flowforming is an alternative forming method to produce axisymmetric parts at lower costs than the traditional machining of forged rings. - Flowforming of pressure vessels in SS410 is therefore a safe forming process as long as the forming parameters and the initial sheet properties are controlled (locked process) once the process has been qualified to ensure reproducibility. ## **FURTHER WORK** - Perform equivalent study on Inconel parts. - Evaluation of use of partly recovered flowformed case to refine final microstructure and enhance properties. - Add details (flanges, weld lips, bosses, ...) on flowformed shell to get (as close as possible) the final shape. ## **AKNOWLEDGEMENTS** • The author wishes to thank Mélissa Després and Mark Beauregard of Pratt & Whitney Canada for the numerous discussions and results used in this paper, as well as Kenneth Healy from PMF-Industries who provided us flowformed cases for this investigation. # MICROSTRUCTURE: grain size #### TESTING REPORT METALLOGRAPHY – GRAIN SIZE M05112102 Purchase order #: 4500720991 Part description: Flow Formed Part #: MD3064090 MT #: 2005-952 Engine #: PW615 Material Spec.: AMS 5504 Heat code: Annealed Testing Specification: ASTM E 112 #### GRAIN SIZE DISTRIBUTION ALONG THE 3 ORTHOGONAL DIRECTIONS | | 0° | | 90 |)° | 180° | | 270° | | |----|----------|-------|----------|----------------|----------|----------------|----------|----------------| | Lo | Location | | Location | Gr.size
no. | Location | Gr.size
no. | Location | Gr.size
no. | | | A1c | 10,98 | A2c | 10,97 | A3c | 10,91 | A4c | 10,66 | | Α | A1a | 11,09 | A2a | 11,14 | A3a | 11,20 | A4a | 10,94 | | | A10D | 10,62 | A2ID | 10,64 | A3OD | 10,95 | A4ID | 10,50 | | | B1c | 11,89 | B2c | 11,54 | B3c | 11,30 | B4c | 11,01 | | В | B1a | 11,57 | B2a | 11,36 | B3a | 11,28 | B4a | 10,94 | | | B10D | 11,17 | B2ID | 10,99 | B3OD | 10,93 | B4ID | 10,71 | | | C1c | 10,82 | C2c | 10,54 | C3c | 10,72 | C4c | 10,62 | | С | C1a | 11,02 | C2a | 10,71 | C3a | 11,01 | C4a | 11,03 | | | C10D | 10,89 | C2ID | 10,22 | C3OD | 10,63 | C4ID | 10,12 | Microstructure of Flowformed and Annealed Case (Grain Size) # **MICROSTRUCTURE:** hardness Purchase order #: 4500720991 Part description: Flow Formed Part #: MD3064090 MT #: 2005-952 Engine #: PW615 Material Spec.: AMS 5504 Heat code: Annealed Testing Specification: ASTM E 112 Scale HV 500 Bloc Calibration 900020442 | | | 0° | | | 90° | | | 180° | | | 270° | | |----|--------|-----|---------------|------|-----|---------------|------|------|---------------|------|------|---------------| | Lo | cation | HV | Equiv.
HRB | Loc. | HV | Equiv.
HRB | Loc. | ΗV | Equiv.
HRB | Loc. | нν | Equiv.
HRB | | | A1c | 161 | 83,70 | A2c | 159 | 82,86 | A3c | 158 | 82,81 | A4c | 163 | 84,28 | | Α | A1a | 161 | 83,54 | A2a | 162 | 83,90 | АЗа | 162 | 84,00 | A4a | 165 | 84,87 | | | A10D | 166 | 85,20 | A2ID | 166 | 85,05 | A3OD | 164 | 84,45 | A4ID | 168 | 85,66 | | | B1c | 160 | 83,35 | B2c | 166 | 85,03 | ВЗс | 158 | 82,65 | B4c | 162 | 83,80 | | В | B1a | 162 | 83,83 | B2a | 165 | 84,66 | ВЗа | 162 | 83,95 | B4a | 163 | 84,21 | | | B10D | 167 | 85,43 | B2ID | 167 | 85,32 | B3OD | 164 | 84,37 | B4ID | 162 | 83,87 | | | C1c | 166 | 85,07 | C2c | 164 | 84,41 | C3c | 163 | 84,08 | C4c | 158 | 82,75 | | С | C1a | 165 | 84,88 | C2a | 164 | 84,38 | СЗа | 162 | 83,79 | C4a | 163 | 84,17 | | | C10D | 164 | 84,48 | C2ID | 166 | 84,96 | C3OD | 171 | 86,37 | C4ID | 163 | 84,13 | Microstructure of Flowformed and Annealed Case (Hardness) # **FLOWFORMING** # **TENSILE TESTS** | Sample | A1L | A1T | A3L | A3T | A2L | A2T | A4L | A4T | |---------------|------|------|------|------|------|------|------|------| | Yield (Mpa) | 350 | 365 | 330 | 330 | 360 | 360 | 350 | 350 | | UTS (Mpa) | 727 | 696 | 717 | 706 | 714 | 702 | 703 | 721 | | strain at UTS | 0.21 | 0.14 | 0.18 | 0.16 | 0.19 | 0.18 | 0.16 | 0.19 | | Sample | B1L | B1T | B3L | B3T | B2L | B2T | B4L | B4T | | Yield (Mpa) | 350 | 360 | 370 | 330 | 350 | - | 340 | - | | UTS (Mpa) | 662 | 684 | 681 | 718 | 693 | 702 | 719 | 752 | | strain at UTS | 0.14 | 0.13 | 0.14 | 0.21 | 0.13 | 0.15 | 0.21 | 0.22 | | Sample | C1L | C1T | C3L | C3T | C2L | C2T | C4L | C4T | | Yield (Mpa) | 345 | 340 | 360 | - | - | 355 | 365 | 340 | | UTS (Mpa) | 716 | 703 | 688 | - | 697 | 706 | 697 | 682 | | strain at UTS | 0.23 | 0.21 | 0.17 | - | 0.19 | 0.18 | 0.17 | 0.16 | Tensile test data of all samples of the flowformed case (L=axial direction, T=circumferential direction). Results of samples 1/3 and 2/4 are presented together as they correspond to symmetrical positions on the case: 0\(^1180^\) and 90\(^1270^\), respectively ## **TEXTURE REPRESENTATION** ## **Crystal Lattice** - To each grain is associated a specific crystallographic orientation. The orientation is determined by how the crystal lattice is orientated in (with respect to) the sample. - The crystal lattice is repeated within a grain until a grain boundary is reached. At the boundary, the regular pattern is disturbed. In adjacent grains, the crystal lattice is usually differently orientated. **Soap Bubble Model of a Polycrystal** ## **TEXTURE REPRESENTATION** - Notion of texture is normally associated to polycrystals: - volume decomposed into several grains, each one associated with an orientation: - Miller indices (cube): {001}<100>* {crystal plane||sheet plane}, <crystal direction||RD> - ✓ Euler angles (cube): $(φ_1, φ, φ_2) = (0°, 0°, 0°)$: rotation: sample ↔ crystal coordinate system. - Random distribution of grain orientations: - > the material has a random texture. - Non-random distribution of grain orientation: - the material has a given texture; - macroscopic anisotropies may result. - * {001} : family of specific planes (001), (001), ... <100> : family of specific directions [100], [100], ... # **Texture Representation in Rolled Sheet** random texture Ka: sample coordinate system Kb: crystal coordinate system cube texture (0°,0°,0°) (no rotation necessary) # **Texture Representation** Schematic ODF showing the positions of the main texture components in Al and its alloys - Cube {001} <100> - Goss {011} <100> - Brass {011} <211> - P {011} <uvw> - ▲ Copper {112} <111> - S {123} <634> # **Texture Representation** Schematic ODF showing the positions of the main texture components on the ϕ_2 =45° section Gamma Fibre: (111)<uvv> Cube: (001)<100> Goss: (001)<110> (hkl): plane || radial direction <uvv>: direction || axial direction ## **TEXTURE REPRESENTATION** - These ODF's are similar to the ones obtained after rolling at intermediate reduction and recrystallisation of alpha steels. - The fact that flowforming and rolling textures share similar features, at least after recrystallisation, adds more conviction to the affirmation that both flowforming and rolling are plane-strain processes (the rolling and transverse directions being replaced by the axial and circumferential directions, respectively). | Sample | Flowformed L | Forged L | | |---------------|--------------|-----------------|--| | Yield (Mpa) | 340 | 365 | | | UTS (Mpa) | 719 | 758 | | | strain at UTS | 0.21 | 0.20 | | | | | | | | Sample | Flowformed T | Forged T | | | Yield (Mpa) | 350 | Forged T
340 | | | • | 350 | | | Tensile test data of the flowformed and machined samples (L=axial direction, T=circumferential direction) | Sample | Flow C3 L | Flow C2 L | Forged 1 L | Forged 2 L | |---------------|-----------|-----------|------------|------------| | Yield (Mpa) | 720 | 730 | 720 | 730 | | UTS (Mpa) | 1030 | 1016 | 1058 | 1031 | | strain at UTS | 0.07 | 0.09 | 0.09 | 0.07 | | Sample | Flow C3 T | Flow C1 T | Forged 1 T | Forged 2 T | | Yield (Mpa) | 730 | 720 | 730 | 720 | | UTS (Mpa) | 1018 | 1023 | 1041 | 1042 | | strain at UTS | 0.08 | 0.08 | 0.07 | 0.09 | Tensile test data of the flowformed and machined samples in the hardened condition(L=axial direction, T=circumferential direction)